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Extreme weather events have a large impact on society, but are challenging to forecast
accurately. In this study, we carried out a theoretical investigation of the local predictability
of extreme weather events using the Lorenz model. We introduce a new method using the
backward nonlinear local Lyapunov exponent to quantitatively estimate the local
predictability limits of extreme events. The local predictability limits of extreme events
on an individual orbit of a dynamical trajectory are broadly the same, whereas this is not the
case if they are on different orbits. The specific structure of the Lorenz attractor is
responsible for this phenomenon. Our results show that the local predictability limits of
extreme events do not decrease or increase monotonically as the events increase in
magnitude. This indicates that the magnitude of extreme events is not the only factor that
affects the local predictability. The dynamical flow, initial error size, and structure of an
attractor may also affect the local predictability. We also quantitatively compared the local
predictability of extreme warm and cold events. This showed that the local predictability
limits of extreme warm events are higher than extreme cold events at the same probability.
A statistical analysis (i.e., the minimum, first quartile, median, third quartile, and maximum)
also suggests that the extreme warm events have higher local predictability limits. In
general, extreme warm events are more predictable than extreme cold events.

Keywords: extreme warm and cold events, local predictability limits, backward nonlinear local lyapunov exponent,
statistical analysis, lorenz model

INTRODUCTION

Extreme weather events have significant economic and societal impacts (Laaidi et al., 2012; Howe et al.,
2019; Sun et al., 2019). Numerous studies have shown that the frequency and intensity of extreme weather
events increase due to global warming (Dosio et al., 2018; Howe et al., 2019; Nayak and Takemi, 2019). As
such, it is increasingly important to be able to accurately forecast extreme events, although this remains
challenging. The forecasting skills of extreme events need to be improved. The chaotic nature of
atmospheric systems and relatively poor predictability of numerical models contribute to the low
forecasting skill. In addition, insufficient data mean that the physical mechanisms of extreme events are
poorly understood. Consequently, forecasting extreme events is an important field of current research.
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Since the concept of predictability was proposed by Thompson
(1957) and Lorenz (1963), a number of studies have investigated
atmospheric predictability, including extreme events. Hallerberg
et al. (2007) used the receiver operating characteristic (ROC)
curve to investigate the predictability of extreme increments in an
auto-regressive model with an order of one for wind speed and
long-range correlated data. The results showed that the
predictability increases as the size of the events increases,
which is consistent with some previous studies (Lamper et al.,
2001; Gober et al., 2004; Kantz et al., 2004). Hallerberg and Kantz
(2008a) further investigated under what circumstances large
events are more predictable than smaller events. They found
that the predictability of different sized events follows a
probability distribution function (PDF). If the PDF of the
underlying stochastic process is Gaussian, then larger events
have a higher predictability, whereas they have lower
predictability if the PDF has a power-law tail. In the case of
an exponential distribution, the predictability is not significantly
associated with the event size. However, Hallerberg and Kantz
(2008b) found that the predictability of large events is better for
all types of distributions. Franzke (2012) used reduced order
models to study the predictability of extreme events and showed
that larger events are more predictable. Bodai (2015) used the
ROC curve to study the predictability of larger extreme events
with a low-order model and demonstrated that larger events are
more predictable when there are no model errors. Although the
aforementioned studies suggest that extreme events have a higher
predictability, some studies have indicated this is not the case.
Sterk et al. (2012) used the finite-time Lyapunov exponent (FTLE,
e.g., Nese, 1989; Yoden and Nomura, 1993) method to investigate
the predictability of extreme values in three different geophysical
models. Sterk et al. (2012) showed that the observable attractors
of dynamical systems and the prediction lead time all affect the
predictability of extreme values. However, it was not possible to
determine whether extreme or non-extreme events were more
predictable without specific scenarios. Subsequently, Sterk et al.
(2016) investigated if the predictability decreases as the extreme
events become larger. Using the mean-squared error (MSE) and
daily wind speed forecasts produced by an ensemble prediction
system it was shown that the predictability decreases for larger
extreme events. Sterk and Kekem (2017) further demonstrated
that the predictability of extreme events depends on the
dynamical model regime and does not have universal properties.

Based on the aforementioned studies, it is clear that the
predictability of extreme events is complex and requires
development of a robust method to assess the predictability.
The FTLE method used by Sterk et al. (2012) characterized
the average growth rate of infinitesimally small errors in a
linear regime. However, the initial errors related to extreme
events in real atmospheric systems may have a finite size. In
addition, the initial errors increase nonlinearly because of the
chaotic nature of the atmosphere (Mu and Duan, 2003; Mu et al.,
2007; Duan and Mu, 2009). As such, the FTLE method may not
be suitable for studying the predictability of extreme events. Based
on the nonlinear local Lyapunov exponent (NLLE, e.g., Ding and
Li, 2007; Ding et al., 2008; Li et al., 2020b)method (e.g., Ding and
Li,2007; Ding et al., 2008; Li et al., 2020a), we recently developed a
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new method, which is the backward nonlinear local Lyapunov
exponent (BNLLE) method (Lietal,, 2019; Li et al., 2020a; Li et al.,
2021). The BNLLE method takes into account nonlinearity, and
can be used to study the predictability of given states and, in
particular, extreme states. This method can determine how far in
the future it is possible to predict an extreme event before it
happens. Unlike the NLLE method, it continuously searches
backwards for the corresponding initial state of an extreme
state. When the corresponding initial state is found, the time
length between the corresponding initial state and extreme state is
determined as the predictability limit of the extreme state.

The objective of this research was to apply the BNLLE method
to study the local predictability of extreme events in a theoretical
model. The local predictability limits (LPLs) of extreme events
were quantitatively estimated with the BNLLE method. In
addition, we assessed what types of extreme (i.e, warm and
cold) events are more predictable. The remainder of this paper
is structured as follows. Section Data, Dynamical Model and
Methodology introduces data, the theoretical model and
BNLLE method. Section Definitions of Extreme Warm and
Cold Events describes the definitions of extreme events, and
how extreme warm and cold events can be identified.
Quantitative estimates and a comparison of the local
predictability of extreme warm and cold events are described
in Section Results. Finally, Section Discussion and Conclusion
discusses our results and provides some conclusions based on
our research.

DATA, DYNAMICAL MODEL AND
METHODOLOGY

Data

The time series of variables x, y, and z in the Lorenz model are
obtained by integrating from the model. Besides, we also applied
the BNLLE method to estimating the predictability of an extreme
heatwave event occurring in European in June of 2019. The
forecasts of surface (2 m) temperature are from the TIGGE
(THORPEX Interactive Grand Global Ensemble) dataset with
a horizontal resolution of 0.5° x 0.5° (Bougeault et al., 2010;
Swinbank et al., 2016). The forecasts are made every day at 00/06/
12/18Z on each start day, and the forecast time range is up to 15
days. There are total 51 ensemble members (one control forecast
and 50 perturbed forecasts). The observed surface (2m)
temperature is from ERA-interim analysis dataset on a 0.5
grid (Dee et al,, 2011). The ERA-interim data is four times a
day (00/06/12/18Z). Based on the TIGGE and ERA-interim
datasets, the error growths can be calculated, then they are
used in analysis for quantifying the predictability of the
heatwave event.

Lorenz63 Model

Lorenz (1963) designed a simplified model (hereafter Lorenz63)
to study predictability. The Lorenz63 model can be used as a
weather model, with only warm and cold regimes (Evans et al.,
2004). It has some dynamical properties consistent with the real
atmospheric system (Palmer, 1993; Goodliff et al, 2020). In
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addition, the Lorenz63 model is simple, which is beneficial for
performing a large number of numerical simulations at
relatively low computational cost. Therefore, the Lorenz63
model was used in this study. The dynamical equations are
as follows:

x=-0(x-y)
y=-XxzZ+rx-y. (1)
z=xy-bz

where 0,7, and b are three parameters. In this study, they are 10,
28, and 8/3, respectively. In this scenario, the model
exhibits chaos.

The Lorenz63 model was integrated for 50,000 time steps
using the fourth-order Runge-Kutta scheme with a time step of
0.01 time units (tus). The first 10,000 time states were for the
spin-up and discarded. The remaining 40,000 states were used for
our analysis.

The Backward Nonlinear Local Lyapunov
Exponent Method

For a dynamical system, the predictability is associated with the
growth rate of initial errors perturbed on an initial condition. The
growth of initial errors can be described by:

8 (to + 7) = n(x(t0), 8 (t0), 7)8 (£0), 2

where 8 (o) and 8 (¢y + 7) represent the initial errors and errors at
time ¢y + 7. 51(x(to), 8 (to), 7) is the nonlinear error propagation
term that propagates the initial errors 8 () forward to § (to + 7).
This differs from previous studies (Vallejo and Sanjuan, 2013;
Nastac et al., 2017; Vannitsem, 2017) in which the initial errors
were assumed to be infinitesimally small and to increase in a
linear regime. To measure the average nonlinear growth rate of
errors over a finite time interval, Ding and Li (2007) proposed a
new concept, the nonlinear local Lyapunov exponent (NLLE),
which is expressed as:

1

A (x(to), 8 (to),T) = ;ln 16 (to + 1)

I8t

where A(x (%), 8(to), 7) is the NLLE that measures the average
nonlinear growth rate of the errors. It depends on the initial
condition x (o), initial errors & (t), and integration time. For a
number of initial errors perturbed on the same initial condition,
the ensemble mean NLLE can be given by:

A(x (), 8 (t0), ) = (A (x(t)> 8 (1), 7)) s (4)

where (), represents the average of samples with a large size N
(N — oo). The mean relative growth of the initial error (RGIE)
can be obtained from:

3)

E(x(t), 8 (ty),7) = eX}?’<X(><(to)> S(to),T)T) ©)

Based on Ding and Li (2007), the evolution of the RGIE from
an initial condition x(¢y) can be described by:

E(X(t0)>8(t0)>‘r)_> PC) (6)
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where — £ denotes the convergence in the probability and ¢ is a
constant that RGIE converges to. The constant ¢ can be considered
to represent the climatology. When the RGIE reaches ¢, the
information regarding the initial condition x (t,) is lost, meaning
the predictability is also lost. Therefore, the local predictability of the
initial condition x (#p) can be quantitatively determined as being the
time from the initial time to the climatology time. Figure 1 shows an
example of the NLLE and RGIE as a function of the time steps in the
Lorenz63 model. The initial state is (—3.87, —5.69, 18.01), and its LPL
is approximately 11 tus. The LPL is the longest prediction time from
the initial state. However, what is important is the prediction lead
time for extreme events. The NLLE method cannot estimate the
prediction lead time of extreme events. In order to estimate the
prediction lead time of extreme events, Li et al. (2019) developed the
NLLE method and proposed the BNLLE method.

The BNLLE method firstly takes the extreme state x (t,) as a
target state. We then search backwards for the corresponding
initial state x(t;,) from previous states. It should be noted that:

tin < tex- (7)

The corresponding initial state x(t;,) should meet the
condition that the RGIE from it will converge to the constant
c at the extreme state x (t.,). When a state meets this condition, it
is the corresponding initial state of the extreme state. In search of
the corresponding initial states, the situation that multiple states
meet the condition may happen. In this case, we always choose a
state that maximizes the prediction lead time of the extreme state,
as the corresponding initial state (Li et al., 2019). Therefore, the
LPL of the extreme state x (t.) can be quantitatively estimated as:

LPT = ¢,, — tip. (8)

DEFINITIONS OF EXTREME WARM AND
COLD EVENTS

The Lorenz63 attractor has warm and cold regimes, which can be
considered to represent warm and cold weather (Evans et al,
2004). For the warm regime, the variables x and y should satisfy
the following conditions:

x>0

y>0’ ©)

whereas, for the cold regime, the variables x and y should satisfy
the following conditions:

x<0

y<0° (10)

We chose 40,000 consecutive events on the Lorenz attractor. For
the warm regime, there were 17,292 warm events. For the cold
regime, there were 18,534 cold events. The other 4,174 events are in
the transitional regime, which neither belong to warm nor cold
events. We then adopted the relative threshold method to define the
extreme warm and cold events. The local predictabilities of the first
component x of the Lorenz63 model were examined in this study. If
an event x exceeds the 90th percentile of all the warm events, then
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FIGURE 1 | Variations of the average error (A) rate and (B) growth as a function of time. The initial state and error in the Lorenz63 model are (-3.87, -5.69, 18.01)
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FIGURE 2 | Spatial distribution of the extreme warm and cold events on
the Lorenz attractor projected onto the x-y plane. Red and blue solid dots
represent extreme warm and cold events, respectively. Gray solid dots
represent normal warm and cold events.

this event x is an extreme warm event. Similarly, if an event x is lower
than the 10th percentile of all the cold events, then this event x is an
extreme cold event. It should be pointed out that the Lorenz63 model
is quite simple, and lack of physical processes, compared with the
actual atmosphere. In the model, there are no extreme high or low
temperature processes corresponding to the real atmosphere. Thus,
we call extreme warm and cold events instead of extreme high or low
temperature in the study. Figure 2 shows the spatial distribution of
extreme warm and cold events. The extreme warm and cold events
are all distributed on the edges of the Lorenz attractor.

RESULTS

Local Predictability of Extreme Events

In this study, for each event, we randomly generated 10,000
different initial error vectors, which have the same magnitudes
(107°), but in different directions. The initial error vectors were

301

20

20

FIGURE 3 | Spatial distribution of the LPLs of the extreme warm and
cold events.

then superimposed on each state. Based on the BNLLE method,
the LPLs of the extreme warm and cold events can be
quantitatively estimated. Figure 3 shows the spatial
distribution of the LPLs of the extreme warm and cold events.
For both the warm and cold regimes, the LPLs of the events on
different orbits of a dynamical trajectory are different, whereas
they are similar for the same orbit of a dynamical trajectory
(i.e., the LPLs exhibit an obvious layered structure). Li et al.
(2020a) noted that this phenomenon is determined by the specific
structure of the Lorenz attractor. The events on an individual
orbit around the center of either regime may have similar
dynamical properties, which leads to similar LPLs. Different
LPLs for events on different orbits result from the varying
dynamical properties of the different orbits.

The minimum LPL is ~10 tus, and the maximum is ~16 tus
(Figure 3). As such, the LPLs of the extreme events are highly
variable. To further examine the distribution structure of the
LPLs of extreme events, the extreme warm and cold events were
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FIGURE 4 | Box-and-whisker plot of the LPLs of extreme warm events in different percentiles. The pink symbols and line represent the standard deviations.
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FIGURE 5 | Same as for Figure 4, but for extreme cold events.

Percentiles
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classified based on percentile thresholds. Figure 4 is a box-and-
whisker plot of the LPLs of extreme warm events and their
standard deviations. For the 93rd to 97th percentiles, the
maximum values are higher than the other percentiles (>16
tus), whereas their minimum values are lower than the other
percentiles. For the 91st to 96th percentiles, the standard
deviations of the LPLs are high. However, the standard
deviations of the LPLs decrease from the 97th to 98th
percentiles. The standard deviation of the LPLs for the 99th
percentile increases again, and reaches a maximum. Figure 5
shows the box-and-whisker plot and standard deviations for the
extreme cold events. For the 7th to 9th percentiles, the LPLs have
larger maximum values and lower minimum values than the
other percentiles. The maximum and minimum standard
deviations of the LPLs are for the 4th and 2nd percentiles,
respectively. The standard deviations of the 6th to 9th
percentiles are broadly the same.

We use the term spread here to represent the standard
deviation. For a group of extreme events with the same
magnitude, a larger spread of LPLs results from different
dynamical properties of the extreme events. This indicates that
it is not easy to forecast these extreme events in this group. If the
LPLs have a small spread, then these extreme events have similar

dynamical properties, which would probably lead to good
forecasts. Therefore, the spread can qualitatively reflect the
average predictability of events in a group. The spread of the
LPLs of the two types of extreme events does not decrease or
increase monotonically as the magnitude of the extreme events
increases (Figures 4, 5). This suggests that the magnitude of
extreme events is not the only factor that affects predictability. In
addition to the magnitude, the spatial position of the dynamical
flow, error size, and structure of the Lorenz attractor all affect the
LPLs of the extreme events.

From the above results, the BNLLE method can estimate the
predictability of extreme events in the Lorenz model. To further
verify the feasibility of the method, we also applied the BNLLE
method to quantify the predictability of an extreme heatwave
event in Europe in late June of 2019. We calculated the regional
average surface temperature of (W ~ 45°E, 36'N ~ 50°N).
Supplementary Figure S1 in the supplementary shows that
the average surface temperature continues to rise from 21 June
2019, and reaches the maximum on 27 June 2019. The forecast
errors are calculated by the TIGGE and ERA-interim datasets.
Supplementary Figure S2 shows the nonlinear growth of forecast
errors from June 17. And errors roughly reach saturation on June
27. It suggests that if the forecast starts from June 17, the forecast
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FIGURE 6 | Probability histograms of the LPLs of extreme warm events in different percentiles. Pink dashed lines denote LPL = 14 tus.
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results are accurate before the June 27. After the June 27, the
forecast results are meaningless. For forecasts starting from other
day, the errors will not saturate on June 27 (figures not shown).
Therefore, the local predictability limit of this extreme heatwave
event is 10 days. The GCMs (general circulation models) are
important tools to study the atmospheric predictability. In the
operational forecasts, different GCMs have different forecast
skills. The ECMWEF (European Centre for Medium-Range
Weather Forecasts) employs the Four-dimensional variational
assimilation system to generate the initial analysis conditions.
The singular vectors are perturbed on the initial analysis
conditions. Compared to other GCMs, the GCM in ECMWF
has the best performance (Matsueda and Tannka, 2008). The
NCEP (National Centers for Environmental Prediction) uses the
EnKF (Ensemble Kalman Filter) method to generate initial
condition members. Their GCMs also have high forecast skills
(Campos et al., 2020).

Comparison of the Local Predictability

Limits of Extreme Warm and Cold Events

Society is affected by extreme warm and cold weather events. On
key question is whether warm or cold extreme events are more
predictable. To address this, we carried out further analysis of our
simulation results. Figure 6 shows the probability histograms of

extreme warm events for different percentiles. When the LPLs are
13-14 tus, the probabilities are at a maximum (0.4-0.6). For the
91st to 98th percentiles, lower and higher LPLs have smaller
probabilities. For the 99th percentile, the lower and higher LPLs
also have a relatively high probability. In general, the LPLs of the
extreme warm events have a Gaussian-like distribution.

Figure 7 shows the probability histograms of extreme cold
events for different percentiles. The probabilities are at a
maximum when the LPLs are 13-14 tus. In general, the LPLs
of the extreme cold events also have a Gaussian-like distribution.
However, the proportion of the LPLs of extreme cold events at
<14 tus is higher than for the extreme warm events. This indicates
that the LPLs of extreme cold events have lower values as
compared with the extreme warm events.

To verify this, we calculated the cumulative distribution
functions (CDFs) of the extreme warm and cold events
(Figure 8). Similar to the probability, the LPLs of the extreme
warm events are always higher than those of the extreme cold
events. Therefore, the LPLs of the extreme warm events have
higher values.

We also statistically analyzed the LPLs of the two types of
extreme events. Figure 9 is a box-and-whisker plot of the LPLs for
all the extreme warm and cold events. It shows the minimum, first
quartile, median, third quartile, and maximum of the extreme
events. The maximum LPL of the extreme warm events is >16 tus,
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FIGURE 7 | Same as for Figure 6, but for extreme cold events.
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which is higher than that of the extreme cold events (~16 tus).
The other four statistical parameters exhibit similar differences as
the maximum (Table 1). Therefore, the LPLs of the extreme
warm events are higher than those of the extreme cold events.
Figure 10 shows the PDFs of the LPLs of the two types of
extreme events. When the LPL of the extreme warm events is 13.6

17 T :

16

15F

—_————

14+ .

LPLs

13F 1

T —
I S

extreme warm extreme cold

FIGURE 9 | Box-and-whisker plot of the LPLs for all the extreme warm
and cold events.

TABLE 1 | Statistical parameters for the LPLs of the extreme warm and cold
events.

Minimum Q1 Median Q3 Maximum
Extreme warm 11.3 131 13.7 14.4 16.2
Extreme cold 10.6 12.7 134 14.0 16.0
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events where the probabilities are at a maximum.

tus, the probability reaches a maximum value (0.35). For the
extreme cold events, the maximum probability is 0.33, at LPL =
13.4 tus. When the LPL is <13.2 tus, the probabilities of the
extreme cold events are always higher than those of the extreme
warm events. For a LPL >13.2 tus, the opposite is the case.
Therefore, the LPLs of the extreme warm events are higher than
for extreme cold events. Therefore, the CDFs, statistical
parameters, and PDFs of the two types of extreme events
show that extreme warm events have higher LPLs, and thus
are more predictable than extreme cold events.

DISCUSSION AND CONCLUSION

Extreme weather events are having increasingly significant
impacts on society due to global warming, in terms of both
frequency and magnitude. However, forecasting such extreme
events is challenging. In this paper, we have introduced a new
method (BNLLE) to investigate the predictability of extreme
events. The theoretical model is able to perform large numbers
of numerical simulations at a relatively low computational cost.
In addition, the theoretical model (i.e., the Lorenz63 model) can
mimic the dynamical properties of the atmosphere.

In a dynamical system, large numbers of initial error vectors
perturbed on an initial condition will increase with time. At a
specific time (i.e., ¢), the information of the initial condition is
lost, along with the predictability. Thus, the predictability limit
from the initial condition can be determined. For the BNLLE
method, it is important to find the corresponding initial state of
the extreme state. If sufficient initial error vectors are perturbed
on an initial state x (t;,) and increase to reach climatology at the
time of the extreme state x(t,.), the initial state x(t;,) is the
corresponding initial state. The time interval between x (t;,) and
x (tex) is the LPL of the extreme event. Compared with the FTLE
method used by Sterk et al. (2012), the BNLLE method takes into
account the nonlinearity produced by the chaotic nature of the
dynamical system. In addition, the magnitude of the initial errors
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can be a finite quantity. For the FTLE method, the magnitude of
the initial errors is assumed to be infinitesimally small, which may
not correspond to the situation of the actual atmosphere.

To quantitatively estimate the LPLs of the extreme events, we
firstly obtained the extreme warm and cold events in the
Lorenz63 model, based on the relative threshold method. The
BNLLE method was then used to quantitatively estimate the LPLs
of these extreme warm and cold events. The spatial distribution of
the LPLs has a layered structure, whereby the LPLs of events on
an individual orbit around the center of either regime are broadly
the same, whereas the LPLs are not the same for events on
different orbits. Li et al. (2020a) noted that the events on an
individual orbit around the center of either regime may have
similar dynamical properties, which leads to similar LPLs.
Different LPLs characterize events on different orbits due to
the variable dynamical properties of the different orbits. Our
results also show that the LPLs of the extreme warm and cold
events have different values in different percentiles (Figures 4, 5).
Extreme warm or cold events with similar dynamical properties
will have similar LPLs, leading to a smaller standard deviation.
This probably enhances the forecast skill for such events.
Therefore, the standard deviation can qualitatively reflect the
average predictability of events in a group. The spread here
represents the standard deviation. A larger spread reflects a
lower average LPL for extreme events in a group and vice
versa. The range of the LPLs for the two types of extreme
events does not decrease or increase gradually as the
magnitude of the extreme events increase (Figures 4, 5). This
suggests other factors, in addition to the magnitude of the
extreme events, affect the predictability. These factors may
include the spatial position of the dynamical flow, error
magnitudes, and structure of the Lorenz attractor. In addition,
we also apply the BNLLE method to quantify the local
predictability of an extreme heatwave event in late June 2019,
in Europe. This temperature keeps rising from 21 June 2019, and
reaches the maximum on 27 June 2019. Using the BNLLE
method, the initial forecast errors started from June 17 grow
to reach saturation on June 27. Therefore, the predictability limit
of the extreme heatwave events is 10 days. The GCMs are
important tools to study the atmospheric predictability. The
GCM employed by the ECMWF has the best performances.
GCMs used by other centers like the NCEP also have high
forecast skills. The distributions of LPLs for extreme warm
and cold events both have a Gaussian-like distribution. The
maximum probabilities occur when the LPLs are 13-14 tus for
the two types of events. However, at the same probability, the
LPLs of the extreme warm events are always higher than those of
the extreme cold events. This indicates that the LPLs of the
extreme warm events are higher than for the extreme cold events.
The minimum, first quartile, median, third quartile, and
maximum of the LPLs for the extreme events also show that
the LPLs of the extreme warm events are higher than those of the
extreme cold events. Similarly, the PDFs suggest that the LPLs of
the extreme warm events are higher than those of the extreme
cold events. Therefore, our results demonstrate that extreme
warm events are more predictable than extreme cold events.
Due to the simplicity of the Lorenz63 model as compared with the
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actual atmosphere, more sophisticated atmospheric and climate
modeling is needed to verify this hypothesis.
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